

MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION 2024/2025 ACADEMIC YEAR

FOURTH YEAR **FIRST** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH PROGRAMMING

AMS 403 – TIME SERIES ANALYSIS II

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question ONE and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A – ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

Describe the following time series models:

a)	Autoregressive model	(7marks)
b)	Moving average model	(7marks)
c)	Autoregressive integrated moving average model	(6marks)
d)	Centralised autoregressive conditional heteroscedasticity model	(5marks)
e)	Time series neural networks	(5marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

The following are the daily stock prices of a company listed at the Nairobi stock exchange for a period of 12 days:

3.1, 2.7, 4.5, 4.5, 6.8, 6.4, 8.2, 9.2, 14.6, 17.1, 22.8, 32.1

- a) Compute the daily log returns r_t (6marks)
- b) Compute the sample mean, variance, and skewness, kurtosis, minimum and maximum of the daily log return. (6marks)
- c) Perform the Jarque and Bera test on the normality of r_t (3marks)
- d) Test the null hypothesis H_0 : $\rho_1 = \rho_2 = \rho_3 = 0$ (3marks)
- e) Write R code to perform the analysis in c) and d) above. (2marks)

QUESTION THREE (20 MARKS)

Suppose that daily log return of a security follows the model:

$$r_t = -0.15 + 0.32r_{t-1} - 0.28r_{t-2} + a_t$$

Where $\{a_t\}$ is a Gaussian white noise with mean zero and variance 0.05

Assume that $r_9 = 0.18$ and $r_{10} = 0.12$

a)	Determine whether the model is stationary	(5marks)
b)	Find the mean and variance of the return series r_t	(6marks)
c)	Compute the lag-1 and lag-2 autocorrect ions of r_t	(3marks)
d)	Computer the 1- and 2- step ahead forecasts of the return series at the forecast	t origin $t = 10$
		(3marks)
e)	What are the associated standard deviations of the forecast errors?	(3marks)

QUESTION FOUR (20 MARKS)

Discuss the following non-linear time series models:

a)	Threshold Autoregressive (TAR) models	(5marks)
b)	Markov switching models	(5marks)
c)	Nonlinear Autoregressive (NAR) models	(5marks)
d)	State space models	(5marks