

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF COMPUTING AND INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIVERSITY POSTGRADUATE EXAMINATION 2024/2025 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATION FOR MASTER
OF SCIENCE IN INFORMATION TECHNOLOGY
SIT 800 – PROBLEM SOLVING WITH PROGRAMMING
DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer any FOUR questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

QUESTION ONE (25 MARKS)

- a. Define the class P. how does it differ from NP. (4 marks)
- Explain the difference between private protected and public protected access modifiers in Java. How do they affect access to class members? (6 marks)
- c. Use the steps of problem solving to draw an analogy with those of solving programming problems accompanied by some explanation. (5 marks)
- d. Compare the performance of three sorting algorithms; merge sort, quick sort and insertion sort. Explain which algorithm performs the best and why. (10 marks)

QUESTION TWO (25 MARKS)

a. Discuss at least two real world application of SAT solves that work with CNF formulas.

(6 marks)

- b. Using an example, illustrate polynomial time non-deterministic algorithm. (6 marks)
- c. In the problem of finding the shortest path in a weighted graph an NP compete problem?Justify your answer. (7marks)
- d. Write a merge sort algorithm. Find out the best worst and average cases of this algorithm.Sort the following numbers using merge sort. (6 marks)

QUESTION THREE (25 MARKS)

- a. What is a polynomial time verification algorithm? Provide an example of a problem that can be solved in polynomial time. (5 marks)
- b. Compare and array and linked list implementation of basic data structure such as stack and a queues
 (12 marks)
- c. Write a dynamic programming solution to solve the 0/1 knapsack problem. You are given a list of items, each with a weight and value, and a knapsack problem with a maximum capacity. Your solution should maximise the total value that can be carried without exceeding the capacity.

(8 marks)

QUESTION FOUR (25 MARKS)

- a. Given a decision problem in NP, describe how you would prove that it is NP complete. What steps would you take? (10 marks)
- b. Implement a binary Tree (BsT) class with methods for insertion, deletion, searching and inorder traversal.
 - i. Insert the following integers into the BsT; 20,10,30,5,15,25,35. (5 marks)
 - ii. Delete the node with value 10 and perform an in-order traversal to show the results.(5 marks)
 - iii. Search for the value 25 in the tree and display the results. (5 marks)

QUESTION FIVE (25 MARKS)

- a. Describe an algorithm that runs in exponential time and explain why it is consider inefficient for large inputs. (4 marks)
- b. What are some common polynomial time complexities e.g. O(n) O(n2)? Provide examples of algorithms that exhibit these complexities. (6 marks)
- c. Explain the role of approximation algorithms for problem that are solvable in exponential time. (6 marks)
- d. Provide an example of a graph that contain a Hamiltonian cycle and one that does not. Explain your reasoning. (9 marks)