

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY POSTGRADUATE EXAMINATION 2024/2025 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATION FOR DOCTOR OF PHILOSOPHY IN STATISTICS

AMS 802 – OPTIMAL DESIGN OF EXPERIMENTS

DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer any FOUR questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

QUESTION ONE (25 MARKS)

(a) On the regression range:

$$\chi = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \right\},$$

Show that the unique optimal design for θ_1 in Ξ is $\xi \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \frac{2}{3}$, $\xi \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \frac{1}{3}$ (4 marks)

- (b) In the line fit model over $\mathcal{T} = [-1; 0]$, show that the unique optimal design for $\theta_1 + \theta_2$ in Ξ is $\xi \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{3}$, $\xi \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{2}{3}$ (4 marks)
- (c) In the parabola fit model over $\mathcal{T} = [-1; 0]$ determine designs that are optimal for $\mathbf{c}' \boldsymbol{\theta}$ in Ξ with:

i.
$$c = (1,1,1)'$$
 (2 marks)

ii.
$$c = (1,0,-1)'$$
 (2 marks)

iii.
$$c = (1,0,-2)'$$
 (2 marks)

(d) Consider a trigonometric fit model of degree 2:

$$Y_{ij} = \alpha + \beta_1 \cos(t_i) + \gamma_1 \sin(t_i) + \beta_2 \cos(2t_i) + \gamma_2 \sin(2t_i) + E_{ij}$$

Using
$$t = (0, \pi/3, 2\pi/3, \pi, 4\pi/3, 5\pi/3, 2\pi)$$

- i. Compute the moment matrix of the design. (6 marks)
- ii. Determine the eigenvalues of the matrix in i) above. (5 marks)

QUESTION TWO (25 MARKS)

- (a) Explain the linear parameter subsystem. Verify this by considering the full parameter system $(\theta_1, \theta_2, \theta_3, \theta_4)'$ and the parameter subsystem $(\theta_1, \theta_2, \frac{1}{2}(\theta_3 + \theta_4))'$ (5 marks)
- (b) In the model with regression function $f(t) = {t \choose 1-t}$ Over $\mathcal{T} = [0;1]$ show that the unique optimal design for θ_1 in Ξ is $\xi {1 \choose 0} = 1$ (5 marks)
- (c) For the compact convex set;

$$\mathbf{M} = \left\{ \begin{bmatrix} 1 & 0 & \alpha \\ 0 & \alpha & 0 \\ \alpha & 0 & \alpha \end{bmatrix} : \alpha \in (0,1) \right\}$$

and the matrix:

$$\mathbf{K} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

obtain C_K (6 marks)

(d) Consider the two matrices A and B both similar to M in (c) above where $\alpha = 0.4$ for A and $\alpha = 0.2$ for B. Obtain C_A and C_B . Hence find $\phi_0(C_A)$, $\phi_0(C_B)$, $\phi_{-1}(C_A)$ and $\phi_{-1}(C_B)$, then make necessary conclusions. (9 marks)

QUESTION THREE (25 MARKS)

- (a) Show that for every positive homogeneous function $\phi: NND(s) \to \mathbb{R}$, the following statements are equivalent.
 - i. ϕ is superadditive

ii. ϕ is concave

(10 marks)

(b) State and prove the Gauss - Markov theorem

(8 marks)

(c) Describe the classical optimality criteria. Hence compute the optimal valves for the first order 2³ design. (7 marks)

QUESTION FOUR (25 MARKS)

The octagon design below is used in an experiment that has the objective of filling a second order response model:

x_1	x_2	у
1.0	0.0	13
$\sqrt{2}$	$\sqrt{2}$	8
$\frac{\sqrt{2}}{2}$	2	
0.0	1.0	10
$ \frac{-\sqrt{2}}{2} $ $ -1.0 $ $ \frac{-\sqrt{2}}{2} $	$\sqrt{2}$	9
	2	
-1.0	0.0	9
$-\sqrt{2}$	$ \begin{array}{r} 0.0 \\ -\sqrt{2} \\ \hline 2 \\ -1.0 \end{array} $	10
0.0	-1.0	13
$\sqrt{2}$	$-\sqrt{2}$	11
$\frac{\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	
0	0	9
0	0	7

a) Show that the design is rotatable.

(4 marks)

b) Fit the second order response model given that

$$(X'X)^{-1} = \frac{1}{8} \begin{bmatrix} x_0 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 \\ 4 & 0 & 0 & -4 & 0 & -4 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ -4 & 0 & 0 & 7 & 0 & 3 \\ 0 & 0 & 0 & 0 & 8 & 0 \\ 4 & 0 & 0 & 3 & 0 & 7 \end{bmatrix}$$

(8 marks)

c) Perform canonical analysis. What type of surface has been found?

(7 marks)

d) What operating conditions on x_1 and x_2 lead to the stationary point?

(6 marks)

QUESTION FIVE (25 MARKS)

A gasoline blending experiment involved three mixture components. There are no constraints on the mixture proportions and the following 10 run design is used:

$\overline{x_1}$	x_2	x_3	y (mpg
1	0	0	24.5,25.1
0	1	0	24.8,23.9
0	0	1	22.7,23.6
$^{1}/_{2}$	$^{1}/_{2}$	0	25.1
$^{1}/_{2}$	0	$^{1}/_{2}$	24.3
0	$^{1}/_{2}$	$^{1}/_{2}$	23.5
$^{1}/_{3}$	1/3	1/3	24.8,24.1
$^{2}/_{3}$	1/6	1/6	24.2
$\frac{1}{6}$	$^{2}/_{3}$	$^{1}/_{6}$	23.9
1/6	$^{1}/_{6}$	$^{2}/_{3}$	23.7

a) Determine the type of design the experimenters used

(2 marks)

b) Fit a first order mixture model to the data

(13 marks)

c) Is the model fitted in (B) adequate?

(10 marks)