

# MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

### DEPARTMENT OF MATHEMATICS AND ACTURRIAL SCIENCE

### UNIVERSITY POSTGRADUATE EXAMINATION 2024/2025ACADEMIC YEAR

### FIRST YEAR FIRST SEMESTER EXAMINATION FOR MASTER OF SCIENCE IN STATISTICS

## AMS 603 MULTIVARIATE METHODS DURATION:3 HOURS

#### **INSTRUCTIONS TO CANDIDATES:**

- 1. Answer any FOUR questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

#### **QUESTION ONE (25 MARKS)**

- a) Let  $x_1, x_2, ..., x_{20}$  be a random size of size n=20 from  $N_6(\mu, \Sigma)$  population. Specify each of the following completely
  - i) The distribution of  $(X \mu)' \Sigma^{-1} (X \mu)$ . (1 mark)
  - ii) The distribution of  $\overline{X}$  and  $\sqrt{n}(\overline{X} \mu)$ . (2 marks)
  - iii) The distribution of (n-1)S (3 marks)
- b) Suppose  $x_1, x_2, ..., x_n$  snare iid  $N_p(0, \Sigma)$ . Find the MIE of  $\Sigma$ . Show that it is biased estimators of  $\Sigma$ . (9 marks)
- c) Forty nine participants in study of a human aging were classified into diagnostic categories' civilised" and "not civilized" in the basis of an intensive psychiatrist examination. Determine the classifications criterion using the discriminate function for the results recorded in the table below. (10 marks)

|                     | Group mean      |              |
|---------------------|-----------------|--------------|
|                     | No Civilisation | Civilisation |
| Information         | 12.57           | 8.75         |
| Similarities        | 9.75            | 5.53         |
| Arithmetic          | 11.49           | 8.50         |
| Picture competition | 7.97            | 4.75         |

$$S = \begin{pmatrix} 11.26 & 9.41 & 7.46 & 3.38 \\ & 13.53 & 7.38 & 2.50 \\ & & 11.58 & 2.62 \\ & & & 5.81 \end{pmatrix} \quad S^{-1} = \begin{pmatrix} -0.260 & -0.137 & -0.059 & -0.066 \\ & & 0.187 & -0.038 & 0.016 \\ & & & 0.151 & -0.017 \\ & & & & 0.211 \end{pmatrix}$$

#### **QUESTION TWO (25 MARKS)**

a) Let X be distributed as  $N_3(\mu, \Sigma)$  where  $\mu' = (1, -1, 2)$  and  $\Sigma = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{pmatrix}$ .

Which of the following random variable are independent? Explain.

i)  $X_1$  and  $X_2$  (2 marks)

ii)  $(X_1, X_3)$  and  $X_2$  (3 marks)

iii)  $X_1$  and  $X_1+3X_2-2X_3$  (3 marks)

v) Specify the conditional distribution of  $X_1$  given that  $X_2=x_2$  and  $X_3=x_3$ . (3 marks)

b) i) Evaluate  $T^2$  for testing  $H_0: \mu' = (7,11)$ , using the data

$$X = \begin{pmatrix} 2 & 12 \\ 8 & 9 \\ 6 & 9 \\ 8 & 10 \end{pmatrix} \tag{4 marks}$$

ii) Specify the distribution of T<sup>2</sup> for the situation in (i) (2 marks)

iii) Using (i) and (ii) test  $H_0$  at the  $\alpha = 0.05$ . What conclusion do you reach? (3 marks)

#### **QUESTION THREE (25 MARKS)**

Observations on two responses are collected for three treatments. The observation (x1) vector

Treatment 
$$1 \binom{6}{7}, \binom{5}{9}, \binom{8}{6}, \binom{4}{9}, \binom{7}{9}$$

Treatment 
$$2 \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Treatment 
$$3 \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

- i. Break up the observations into mean, treatments and residual components. Construct the corresponding arrays for each variable. (6 marks)
- ii. Using the information part (i) construct the one-way MANOVA table. (14 marks)
- iii. Conduct a test of hypothesis using  $\alpha = 0.05$  the test equally of the treatment means.

(5 marks)

#### **QUESTION FOUR (25 MARKS)**

a) Let X be of dimension nxp with rank p. Show that e = My and b = Hy are independently distributed where  $y \sim N(X\beta, \sigma^2 I)$  and  $H = X(XX)^{-1} X'$  is  $n \times n$  and

 $M = I - X(XX)^{-1}X'. (8 marks)$ 

- b) Consider the annual rates of returns (including dividends) on the Don-Jones industrial average for the years 1996-2005. The data multiplied by 100, are 0.6, 3.1, 25.3, 16.8, 7.1, 6.2, 25.2, 22.6 26.0 Using these there nine observations to complete the following
  - i. Construct a Q-Q plot. Do the data scam to be normally distributed? Explain. (8marks)
  - ii. Carry out test of normality bases on the correlation coefficient. Let the  $\alpha = 0.01$ .

(9 marks)

#### **QUESTION FIVE (25 MARKS)**

a) What is principal components analysis?

(2 marks)

b) State two uses of principal components analysis

(2marks)

c) The data for the variable  $X_1, X_2$  and  $X_3$  were collected and recorded below

$$X_1$$
 7 5 4 4 5

$$X_2$$
 4 6 4 4 2

$$X_3$$
 2 1 2 2 3

Find the principal components loading, scores and interpret your findings. (21 marks)