

MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

UNIVERSITY ORDINARY EXAMINATION 2024/2025ACADEMIC YEAR

THIRD YEAR **FIRST** SEMESTER EXAMINATION FOR BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING

EMT 302 – FLUID MECHANICS II

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question ONE and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A – ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

- a) Define dimensional Analysis. (2 marks)
- b) State four uses and advantages of dimensional analysis. (8 marks)
- c) Explain the term Dimensional Homogeneity. (2 marks)
- d) A jet of water, 75mm in diameter issues with a velocity of 30m/s and impinges on a stationary flat plate which destroys its forward motion. Find the force exerted by the jet on the plate and work done. (5 marks)
- e) Explain the water hammer Phenomenon. (3 marks)
- f) State four factors which the pressure rise due to water hammer depends. (4 marks)
- g) Estimate for a 1/20 model of a spillway.
 - i. The prototype velocity corresponding to a model velocity of 1.5m/s.
 - ii. The prototype discharge per unit width corresponding to a model discharge per unit width of $0.2\text{m}^3/\text{s}$ per metre. (6 marks)

SECTION B- ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- a) Describe minor energy loses in pipes and give five causes. (6 marks)
- b) In a pipe of 300 mm diameter and 800 m length an oil of specific gravity 0.8 is flowing at the rate of $0.45 \text{m}^3/5$ find:
 - i. Head lost due to friction
 - ii. Power required maintaining the flow (take the Kinematic viscosity of oil as 0.3 strokes). (6 marks)
- c) A horizontal pipe 150 mm in diameter is joined by sudden enlargement to a 255mm diameter pipe. Water is flowing through it at the rate of $0.5 \text{m}^3/\text{s}$. Find
 - i. Loss of head due to abrupt expansion.
 - ii. Pressure difference in the two pipes.
 - iii. Change in pressure if the change of section is gradual without any loss. (8 marks)

QUESTION THREE (20 MARKS)

- a) Explain the following terms
 - i. Turbulent boundary layer

ii. Laminar boundary layer (4 marks)

- b) Describe the following boundary layer thickness.
 - i. Displacement thickness
 - ii. Momentum thickness

iii. Energy thickness (6 marks)

c) The velocity distribution in the boundary layer is given by:

$$\frac{\mu}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y^2}{\delta}\right)$$

Where μ is the velocity at a distance y form the plate and u=U at y=8 where δ boundary layer thickness. Find:

- i. The displacement thickness
- ii. The momentum thickness
- iii. The energy thickness (10 marks)

QUESTION FOUR (20 MARKS)

- a) Explain the following types of flow:
 - i. Steady flow

ii. Uniform flow (4 marks)

b) Show that the work done by a force exerted by a water j et on a moving plate inclined in the direction of the jet is given by:

$$F_x = \rho V^2 \sin^2 \mathbf{P}$$

Where ρ = density, a = area of the jet

V = velocity of the jet

P = Inclination of the plate with the jet

(8 marks)

- c) A nozzle of 60 mm diameter delivers a stream of water at 24m/s perpendicular to a plate that moves away from the jet at 6m/s. Calculate:
 - i. The force on the plate
 - ii. The work done
 - iii. Efficiency of the jet. (8 marks)