

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya. Tel: +254(0) 799 529 958, +254(0) 799 529 959, +254 (0)712 524 293

Website: www.must.ac.ke Email: info@mucst.ac.ke

UNIVERSITY EXAMINATIONS 2024/2025

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN ELECTRICAL AND ELECTRONICS ENGINEERING

EET 3206: ENERGY RESOURCES

DATE: JANUARY 2025 TIME: 2 HOURS

INSTRUCTIONS: Answer Question ONE and any other TWO questions.

: Start each question on a fresh page

: Do not answer more than THREE questions

QUESTION ONE (30 MARKS)

a) Explain the three primary types of fossil fuels. (5 Marks)

b) Describe the environmental impacts of burning coal. (3 Marks)

c) Discuss the role of policy and regulation in promoting renewable energy development.

(6 Marks)

- d) A coal-fired power plant burns 500 tons of coal per hour. The energy content of coal is 24 MJ/kg, and the plant's efficiency is 35%. Calculate how much electrical energy is produced by the plant per hour. (4 Marks)
- e) A factory has a load with an apparent power of 100 kVA and a power factor of 0.7. The management decides to correct the power factor to 0.9. Calculate the reactive power reduction and the new reactive power. (4 Marks)

MUST is ISO 9001:2015 and

- f) A factory operates with a load of 200 kW and a power factor of 0.7. Calculate the capacitive (4 Marks) kVAR required to improve the power factor to 0.9.
- g) Discuss the role of renewable energy sources in mitigating climate change. (4 Marks)

QUESTION TWO (15 MARKS)

- a) Explain why natural gas considered a cleaner fossil fuel compared to coal and oil. (3 Marks)
- b) Discuss the impact of tidal and wave energy systems on marine ecosystems. (7 Marks)
- c) A wind turbine with a rotor diameter of 100 meters is operating in a location with a wind speed of 12 m/s. The air density is 1.225 kg/m³, and the turbine has an efficiency (power coefficient) of 45%. Calculate the power output of the turbine. (5 Marks)

QUESTION THREE (15 MARKS)

- a) Examine the safety concerns and waste management challenges associated with nuclear power. (6 Marks)
- b) A solar panel has an area of 20 m² and an efficiency of 18%. The average solar irradiance at the location is 1000 W/m². Calculate the amount of energy produced by the solar panel in 5 hours of full sunlight. (3 Marks)
- c) Discuss the significance of energy conservation and energy audits in industrial sectors. (6 Marks)

QUESTION FOUR (15 MARKS)

- a) Analyze the socio-economic effects of large-scale hydropower projects. (6 Marks)
- b) A tidal barrage has a potential energy storage of 2,000,000 m³ of water at a height of 10 meters. The density of water is 1000 kg/m³, and the efficiency of the turbines is 80%. Calculate the electrical energy generated in one tidal cycle. (4 Marks)
- c) A short transmission line has a per-unit impedance of 0.1 p.u. If the sending end voltage is 1.05 p.u. and the load at the receiving end is 1.0 p.u. with a power factor of 0.9 lagging, calculate the voltage drop across the transmission line. (5 Marks)

MUST is ISO 9001:2015 and

QUESTION FIVE (15 MARKS)

- a) Compare and contrast solar and wind energy as renewable energy sources. (6 Marks)
- b) A company replaces 100 incandescent bulbs (60 W each) with LED bulbs (10 W each). If the bulbs are used for 8 hours per day, calculate the energy savings per day and per year.
 (4 Marks)
- c) A three-phase transmission line has an inductance per phase of 1.2 mH per kilometer. Calculate the total inductance for a 200 km length of this transmission line. (5 Marks)

