

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.
Tel: +254(0) 799 529 958, +254(0) 799 529 959, +254 (0)712 524 293
Website: www.must.ac.ke Email: info@mucst.ac.ke

UNIVERSITY EXAMINATIONS 2024/2025

SECOND YEAR FIRST SEMESTER EXAMINATION FOR DEGREE OF BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING

EMT 3203: APPLIED THERMODYNAMICS I

DATE: JANUARY 2025 TIME: 2 HOURS

INSTRUCTIONS: Answer Question ONE and any other TWO questions. You must have a clean copy of 'steam tables' for this examination.

QUESTION ONE (30 MARKS)

a) Define the following terms:

i. System (1 mark)

ii. Surroundings (1 mark)

b) State the first law of thermodynamics (2 marks)

c) State the ideal gas equation (1 mark)

d) With the aid of a well labelled diagram, show that the Carnot efficiency is given by:

$$\eta carnot = 1 - \frac{T_2}{T_1}$$

Where T_1 =source temperature

 $T_2 = Sink temperature$ (5 marks)

e) The relative molecular weight of a certain perfect gas was established in an experiment to be 54 and the value of γ to be 1.26. determine:

i. The specific gas constant R, (1 marks)

ii. The specific heat capacities if the gas at constant pressure (c_p) and at constant c) volume (c_v) . (4 marks)

f) Using neat sketches illustrate a reversible constant temperature (isothermal process) on a p-v diagram when the working fluid is:

i. A perfect gas (3 marks)

ii. Steam (3 marks)

g) I kg of steam at 20 bar dryness fraction 0.9 is heated reversibly at constant pressure to a temperature of 300 0 C.

- i. Sketch the cycle on a T-s diagram indicating the area that represents the heat flow, (2 marks)
- ii. Calculate the change in entropy and the heat supplied. (4 marks)
- h) A certain fluid at 15 bar is contained in a cylinder behind a piston, the initial volume being $0.06~\text{m}^3$. Determine the work done by the fluid when it expands reversibly according to a law pV= C to a final volume of $0.12~\text{m}^3$ (3 marks)

QUESTION TWO (15 MARKS)

- a) In a gas turbine unit, gas flows through the unit at 15 kg/s and the unit develops 12 kW. The velocities of the gases at the inlet port and exhaust pipe are 54 m/s and 137 m/s respectively while the specific enthalpy of the gases at entry and exit are 1080 kJ/kg and 340 kJ/kg. Calculate the heat rejected by the turbine. (4 marks)
- b) A unit mass of fluid at a pressure of 3 bar and with a specific volume of 0.15 m^3/kg is contained in a cylinder behind a piston. The fluid expands reversibly to a pressure of 0.6 bar according to a law $\text{pv}^2 = c$, where c is a constant:
 - i. Sketch the expansion process on a p-v diagram. (2 marks)
 - ii. Calculate the work done during the process. (4 marks)
- c) A vessel of volume 0.27 m³ contains nitrogen at 1.013 bar and 15 ⁰ C. If 0.36 kg of nitrogen is now introduced into the vessel; calculate the new pressure in the vessel when the initial conditions are restored. Take the mass of nitrogen to be 28 kg/Kmol and assume it is a perfect gas. (5 marks)

QUESTION THREE (15 MARKS)

a) State the second law of thermodynamics.

(3 marks)

b) Calculate the dryness fraction of steam at 60 bar if its entropy is 5.580 kJ/kgK.

(4 marks)

- c) Dry saturated steam at 100 bar expands reversibly at constant temperature to a pressure of 10 bar.
- i. Sketch the process on a T-s diagram and indicate the area that represents the heat flow.

(3 marks)

ISO/IEC 27001:2013 CERTIFIED

QUESTION FOUR (15 MARKS)

a) Using neat sketch, show that the thermal efficiency of a constant volume air standard cycle is given by the expression:

$$\eta = 1 - \frac{1}{r_v^{\gamma - 1}}$$

Where $r_{v} =$ compression ratio

$$\gamma = \text{index of expansion}$$
 (6 marks)

b) A three-cylinder gasoline engine has a displacement of 1200 cm³ while the clearance volume of each cylinder is 48 cm³. Calculate the air standard efficiency of the engine. Determine also the mean effective pressure if the induction conditions are 1 bar and 25 °C and the maximum cycle temperature is 1350°C. (9 marks)

QUESTION FIVE (15 MARKS)

- a) Determine the entropy of steam at 382 bar and 569^oC. (6 marks)
- b) 0.032 m^3 of nitrogen (molar mass 28 kg/kmol) contained in a cylinder behind a piston is initially at 1.05 bar and 15^0 C . The gas is compressed isothermally and reversibly until the pressure is 4.2 bar.
 - i. Sketch the process on a p-v and T-s diagram, (4 marks)
 - ii. Calculate the change in entropy for the mass of gas involved. (5 marks)

ISO/IEC 27001:2013 CERTIFIED